Information Flow in Computational Systems
نویسندگان
چکیده
منابع مشابه
Quantifying Probabilistic Information Flow in Computational Reactive Systems
Information flow and non-interference are well-established techniques for expressing both integrity and privacy properties. Because of the enormous potential to transmit information using probabilistic methods of cryptography, interest has arisen in extending the traditional notions of information flow to fully reactive settings that allow for reasoning about arbitrary interactive systems, and ...
متن کاملInformation Flow in Interactive Systems
We consider the problem of defining the information leakage in interactive systems where secrets and observables can alternate during the computation. We show that the information-theoretic approach which interprets such systems as (simple) noisy channels is not valid anymore. However, the principle can be recovered if we consider more complicated types of channels, that in Information Theory a...
متن کاملA New Method for Improving Computational Cost of Open Information Extraction Systems Using Log-Linear Model
Information extraction (IE) is a process of automatically providing a structured representation from an unstructured or semi-structured text. It is a long-standing challenge in natural language processing (NLP) which has been intensified by the increased volume of information and heterogeneity, and non-structured form of it. One of the core information extraction tasks is relation extraction wh...
متن کاملComputational Inference of Neural Information Flow Networks
Determining how information flows along anatomical brain pathways is a fundamental requirement for understanding how animals perceive their environments, learn, and behave. Attempts to reveal such neural information flow have been made using linear computational methods, but neural interactions are known to be nonlinear. Here, we demonstrate that a dynamic Bayesian network (DBN) inference algor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Information Theory
سال: 2020
ISSN: 0018-9448,1557-9654
DOI: 10.1109/tit.2020.2987806